skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Michel, Brian_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite its relative simplicity, ethylene is an interesting molecule with wide‐ranging impact in modern chemistry and biology. Stemming from ethylene's role as a critical plant hormone, there has been significant effort to develop selective and sensitive molecular sensors for ethylene. Late transition metal complexes have played an important role in detection strategies due to ethylene's lack of structural complexity and limited reactivity. Two main approaches to ethylene detection are identified: (1) coordination‐based sensors, wherein ethylene binds reversibly to a metal center, and (2) activity‐based sensors, wherein ethylene undergoes a reaction at a metal center, resulting in the formation and destruction of covalent bonds. Herein, we describe the advantages and disadvantages of various approaches, and the challenges remaining for sensor development. 
    more » « less